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Abstract
Measured lifetimes of hot phonons in group-III nitrides have been explained theoretically by
considering three-phonon anharmonic interaction processes. The basic ingredients of the theory
include full phonon dispersion relations obtained from the application of an adiabatic bond
charge model and crystal anharmonic potential within the isotropic elastic continuum model.
The role of various decay routes, such as Klemens, Ridley, Vallée–Bogani and
Barman–Srivastava channels, in determining the lifetimes of the Raman active zone-centre
longitudinal optical (LO) modes in BN (zincblende structure) and A1(LO) modes in AlN,
GaN and InN (wurtzite structure) has been quantified.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is widely known that crystal anharmonicity plays an
important role in determining thermal properties of solids,
such as thermal expansion and thermal conductivity. Crystal
anharmonicity also plays an important role in controlling the
lifetime of hot phonons which are generated during energy
relaxation of carriers in semiconductors. In semiconductor
devices electrons are highly excited into conduction band
either optically or by applying electric field. These high
energy carriers decay towards their ground state, largely by
emission of (near) zone-centre optical phonons [1]. When the
excited carrier density is large, the optical phonon emission
can be very fast with an eventual non-equilibrium population.
The hot phonon effect, caused by slow dissipation (i.e. long
lifetime) of optical phonons, causes degradation of device
performance. The reduction factor in carrier energy relaxation
mechanism has been estimated [2] to be up to 40 in GaAs,
20 in GaN and 24 in InN. For an efficient carrier relaxation
in technologically important semiconductors, such as group-
III nitrides, it is important that the generated optical phonons
are rapidly mutated or dissipated.

Damping of longitudinal optical (LO) modes in po-
lar cubic semiconductors has been studied experimentally
both in frequency domain using spontaneous Raman spec-
troscopy [3–7], and in time domain using incoherent anti-
Stokes Raman scattering [8, 9] and time-resolved coherent
anti-Stokes Raman scattering (CARS) [10–12]. The hot
phonon effect starts to take place when the phonon lifetime

exceeds carrier lifetime (in the low sub-picosecond range).
From Raman spectroscopic measurements [13–15] it has been
revealed that the hot phonon effect is present for zone-centre
LO modes in the wurtzite phase of GaN and InN.

From theoretical view point, the lifetime of the phonons
generated during carrier relaxation in semiconductors can be
controlled by various sources such as impurity scattering,
carrier scattering, and anharmonic scattering from other
phonons. For high quality single crystals phonon–impurity
scattering can be neglected. Also, observed phonon lifetimes
(in the ps range) are usually much larger than that predicted
from carrier–phonon interaction (in the fs range) [16]. Thus it
is assumed that lifetime of such phonons is almost exclusively
contributed by anharmonic interactions in the form of decay
into phonons of lower energies. For grown samples, however,
the low temperature phonon lifetimes may also be influenced
by roughness scattering.

In order to calculate phonon lifetimes governed by
anharmonic interactions we require three main ingredients:
(i) Fourier transform of crystal anharmonic potential,
(ii) phonon dispersion relation and (iii) a full-scale numerical
scheme for Brillouin zone integration. Earlier theoretical
attempts relied on making huge simplifications for each
of these points. Such simplifications include: a simple
expression for crystal anharmonic term based on an ad hoc
treatment, linear dispersion relations for acoustic phonon
branches and Debye’s isotropic continuum model for Brillouin
zone integration. The second and third of these simplifications
can to some extent be expected to work for semiconductors
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in the cubic phase (diamond and zincblende structures with
two atoms per unit cell) but not in non-cubic phases (such
as the wurtzite structure with four atoms per unit cell). In
addition to the consideration of acoustic branches, a proper
account must be made of phonon dispersion relations for low-
lying optical branches in the wurtzite structure of group-III
nitrides. First detailed calculations of anharmonic phonon
decay in cubic semiconductors with a clear understanding of
different decay mechanisms were made by Debernardi and
co-workers [17, 18]. However, their approach, based on a
first-principles treatment of all the three ingredients mentioned
above, is very demanding both from the theoretical and
computational view points. Their method will become even
more demanding for group-III nitrides in the wurtzite structure.
In addition to being computationally very intensive, their
method is not yet fully tested for determining the ingredient (i),
namely the Fourier transform of anharmonic crystal potential.

Over the past few years we have made a systematic study
of phonon lifetimes in cubic and hexagonal semiconductors
by employing the Debye model, with crystal anharmonicity
incorporated in the spirit of an isotropic elastic continuum
scheme [19, 20]. Although some useful insight was gained,
that theory cannot be expected to present accurate and un-
biased predictive results. More recently, we have adopted a
middle of the road approach in determining the lifetime of
LO modes in hexagonal group-III nitrides [21]. This approach
considers the ingredients (ii) and (iii) fully and accurately, and
treats the ingredient (i) in a physically appealing and consistent
manner. In this work we explain our approach fully and present
results for the lifetime of the LO mode in zincblende BN
and for the A1 (LO) mode in wurtzite AlN, GaN and InN.
We attempt to explain both the magnitude and temperature
variation of experimentally observed results by using three-
phonon processes. We also point out the most influential decay
channels for each of these nitride materials.

2. Theory

2.1. Anharmonicity and phonon decay rate

Let us represent a phonon mode as qs, where q is the
wavevector and s is the polarization index. Treating a crystal
as an isotropic anharmonic elastic continuum, the cubic part of
crystal anharmonicity can be expressed as [22]

V3 = 1

3!

√
h̄3

2ρN0�

∑
qsq′s ′q′′s ′′

F3(qs)
√

ω(qs) ω(q′s′) ω(q′′s′′)

× (a†
qs − a−qs)(a

†
q′s ′ − a−q′s ′)(a†

q′′s ′′ − a−q′′s ′′) δq+q′+q′′,G,

(1)

where ρ is the material density, N0 is the number of unit
cells, � is the volume per unit cell, ω(qs), ω(q′s′) and
ω(q′′s′′) are frequencies of phonons modes qs, q′s′, q′′s′′,
G is a reciprocal lattice vector, and a†

qs , aqs etc are the
phonon creation and annihilation operators, respectively. The
coefficient F3(qs) can be expressed in terms of second- and
third-order elastic constants, and is mode and temperature
dependent. In addition, this coefficient is expected to take

a specific value for each three-phonon interaction process
the mode ω(qs) undergoes [22, 23]. Instead of using a
complicated and unreliable expression for F3(qs) we will treat
it in the form of a mode-average and temperature dependent
adjustable parameter F . Within the elastic continuum model
this parameter can be expressed as F = γ /c̄, where γ is mode-
averaged but temperature dependent Grüneisen’s constant and
c̄ is average acoustic speed for phonons. While it is tempting
to use this relationship and consider γ and c̄ as two adjustable
parameters, we feel that it is more convenient to treat the
cubic anharmonic potential energy V3 in terms of the single
adjustable parameter F .

Considering anharmonicity as perturbation to the har-
monic part of crystal potential, we can apply Fermi’s golden
rule formula to derive expressions for three-phonon scattering
events. We will consider a zone-centre phonon (q = 0)s to
decay most dominantly via the normal (G = 0) three-phonon
anharmonic interaction mechanism into two daughter modes
q′s′ and q′′s′′: i.e. (q = 0)s → q′s′ + q′′s′′. Following [22],
the decay rate can be expressed as

τ−1
0s = π h̄F2

2ρN0�

∑
q′s ′q′′s ′′

ω(0s) ω(q′s′) ω(q′′s′′)

× n̄(ω(q′s′)) n̄(ω(q′′s′′))
n̄(ω(0s))

× δ0,q′+q′′ δ(ω(0s) − ω(q′s′) − ω(q′′s′′)), (2)

where n̄(ω(0s)) etc represent the Bose–Einstein distribution
function for the phonon modes qs, etc.

2.2. Lattice dynamics

Realistic phonon dispersion relations in tetrahedrally semi-
conductors have been obtained from the application of both
phenomenological and ab initio theories of lattice dynamics.
Phenomenological approaches include the rigid ion model,
shell models and adiabatic bond charge model. The adiabatic
bond charge model, developed originally for zincblende
semiconductors by Rustagi and Weber [24] and extended for
wurtzite semiconductors by Tütüncü and Srivastava [25, 26],
is among the most physically appealing and successful
approaches for calculating the phonon dispersion relations
for tetrahedrally bonded semiconductors, including group-III
nitrides. The main idea in this model is that the valence
electron charge density distribution is represented by massless
bond charges, endowed with translational degrees of freedom.
In III–V semiconductors the bond charges are positioned along
atomic bonds, displayed towards anions with the ratio 3:5.
Interatomic forces are derived from long-ranged Coulomb,
short-ranged central and short-ranged non-central (i.e. bond-
bending) Keating potentials.

The quality of the results for phonon eigensolutions
obtained from the adiabatic bond charge model calculations
matches that of ab initio calculations [27]. For zincblende
BN there are three acoustic phonon branches and three optical
phonon branches. For wurtzite AlN, GaN and InN, there are
three acoustic branches, three low-lying optical branches, and
six upper-lying optical branches. In this work we are interested
in examining the anharmonic decay rate of the zone-centre LO
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Figure 1. Phonon dispersion relations, density of states, and temperature variation of the anharmonic lifetime of the LO mode in zincblende
BN. The dominant decay routes (via the Klemens channel) are indicated by arrows. The experimental lifetime results (shown by symbols) are
taken from [37].

mode (the mode with the highest frequency) in zincblende BN
and the A1(LO) mode (the 11th zone-centre mode) for wurtzite
AlN, GaN and InN.

2.3. Brillouin zone summation

Having discussed ingredients (i) and (ii) we now will
describe our scheme to deal with ingredient (iii), namely the
Brillouin zone summation necessary for evaluating the phonon
decay rate using equation (2). Dealing with Brillouin
zone summation is an essential requirement for realistic
computation of any property of a crystalline solid. Over the
past few decades many different schemes have been developed
and applied with reasonable success. Some of the available
schemes are inherently more computationally demanding than
others. One of the newer schemes, which is now routinely
applied in electronic band structure calculations, is based on
the concept of ‘special points’ within an irreducible part of
the central Brillouin zone of the lattice under consideration.
According to this scheme, the zone average of a function f (k)

is obtained as

f (k) =
M∑

i=1

wi f (ki ), (3)

where {ki } represents a set of M ‘special points’ and wi is
the weight factor associated with the point ki subject to the
normalization condition

∑
i wi = 1. Several schemes exist for

generating {ki } and {wi}.
For evaluating the expression in equation (2) we first

choose to carry out the summation over q′′ by using the
momentum conserving condition expressed by the Kronecker
delta symbol. This fixes the condition q′′ = −q′. The
summation over q′ is carried out by using the Monkhorst–Pack
special points [28] obtained from the 10 × 10 × 10 division of
the FCC Brillouin zone and the 10 × 10 × 8 division of the
hexagonal Brillouin zone. The energy conservation condition
in equation (2) was dealt with by converting the Dirac delta
function to the Gaussian form with a small broadening factor.
With the above considerations, and invoking the time reversal

symmetry, equation (2) reduces to

τ−1
0s = π h̄F2

2ρ�

1

σ
√

π

∑
s ′,s ′′

M∑
j=1

w j ω(q′
j s

′) ω(q′
j s

′′)

× n̄(ω(q′
j s

′)) n̄(ω(q′
j s

′′))
n̄(ω(0s))

× exp

[
−

(
ω(0s) − ω(q′

j s
′) − ω(q′

j s
′′)

σ ω(0s)

)2]
, (4)

where σ represents the Gaussian broadening factor.

3. Results and discussion

3.1. Phonon dispersion relations

We will first note some important features of the phonon
dispersion relations (namely ω versus q curves) and the
resulting vibrational density of states g(ω) for zincblende BN
and wurtzite AlN, GaN and InN.

Figure 1 shows the calculated phonon dispersion curves
and the vibrational density of states for zincblende BN along
several symmetry directions in the FCC Brillouin zone. Due
to similar masses of the B and N atoms, there is no clear
separation between the acoustic and optical branches. It is
clear that the consideration made in the Debye model of linear
dispersion relation for the acoustic branches is valid only in
the long wavelength regime. Also, the density of states in
the acoustic range is significantly different from the quadratic
variation with frequency, i.e. it does not show the behaviour
g(ω) ∝ ω2 for the entire part of the acoustic range, a feature
commonly employed in the Debye model. Actually, the density
of states is constant in the upper acoustic frequency range
425–675 cm−1. The dispersion relation and the corresponding
density of states in the optical range show non-simple features.
There is a sharp and reasonably narrow peak in the density
of states at around the frequency 950 cm−1, namely in the
transverse optical range.

The phonon dispersion curves and vibrational density
of states for wurtzite structure AlN, GaN and InN are
shown in figures 2–4 along various symmetry directions
in the hexagonal Brillouin zone. As discussed in our
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Figure 2. Phonon dispersion relations, density of states, and temperature variation of the anharmonic lifetime of the A1(LO) mode in wurtzite
AlN. The dominant decay routes (via the Ridley and Barman–Srivastava channels) are indicated by arrows. The experimental lifetime results
(shown by symbols) are taken from [14].

Figure 3. Phonon dispersion relations, density of states, and temperature variation of the anharmonic lifetime of the A1(LO) mode in wurtzite
GaN. The dominant decay routes (via the Ridley channel) are indicated by arrows. The experimental lifetime results (shown by symbols) are
taken from [13].

previous publications [25, 26], these results agree very well
with experimental measurements [29] and first-principles
theoretical calculations [27, 30]. Group theoretical analysis of
phonon modes [29] suggests that at the centre of the hexagonal
Brillouin zone the highest Raman active mode is of symmetry
A1(LO). This mode is indicated as the tip of the arrows drawn
in figures 2–4.

Due to the difference in the masses of Al and N atoms,
the higher-lying optical branches in AlN are separated from the
continuum of other branches with a small gap of approximately
50 cm−1. Below the gap there are two broad peaks in the
density of states curve, centred 250 and 525 cm−1. Above
the gap there is a sharp peak at 650 cm−1 and a small peak
at 750 cm−1. The density of states shows the Debye-like
quadratic behaviour only up to about 250 cm−1. For GaN,
due to a larger mass difference between Ga and N, there is a
larger gap of approximately 200 cm−1 between the upper-lying

optical branches and the remaining branches. Below the gap,
there are two main peaks at 150 and 300 cm−1. Above the gap
there are two sharp peaks at 600 and 700 cm−1. The Debye-like
variation of the density of states is only valid up to 100 cm−1.
The main features in the dispersion curves and density of states
for InN are similar to those for GaN, except for some changes
that occur due to the larger mass difference between In and
N. The gap between the upper-lying and lower-lying optical
branches has increased to approximately 225 cm−1. Peaks in
the density of states curve occur at 100 and 200 cm−1 below the
gap and at 500 and 570 cm−1 above the gap. The Debye-like
variation of the density of states is only valid up to 100 cm−1.

3.2. General considerations for calculations of phonon
decay rates

The frequency and temperature dependence of τ−1
0s due to cubic

anharmonicity can be established analytically by performing
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Figure 4. Phonon dispersion relations, density of states, and temperature variation of the anharmonic lifetime of the A1(LO) mode in wurtzite
InN. The dominant decay routes (via the Ridley and Barman–Srivastava channels) are indicated by arrows. The experimental lifetime results
(shown by symbols) are taken from [15].

the sums in equation (2) within the isotropic continuum
approximation. This was done in [20]. From the analytic
expressions obtained in [20], and assuming γ to be temperature
independent, it can be easily deduced that the anharmonic
decay of a zone-centre phonon mode (of frequency ω) shows
the following frequency and temperature dependences

τ−1(ω, T ) ∝ ω5 exp(−αω/T ) at low temperatures

∝ ω4T at high temperatures, (5)

where α is a constant. At very low temperatures the
term exp(−αω/T ) can be approximated as a constant of
temperature (close to unity), and the cubic anharmonic decay
becomes ‘spontaneous’. At high temperatures the decay rate
increases linearly with temperature.

In our previous theoretical investigations [20], using the
isotropic continuum approach and ignoring impurity/defect
scattering, we concluded that the use of a single Grüneisen
constant γ was insufficient to explain the temperature
dependence of phonon lifetime over the temperature range
for which the Raman data is available. Further effort
(unpublished) has revealed that unacceptable temperature
variation of γ would need to be considered in order to
reproduce experimental data. Motivated by this, one of the
objectives of this work is to investigate if a realistic temperature
dependence of the coefficient F , within the present theoretical
approach based on a realistic phonon dispersion relations, can
help explain the Raman results over the available temperature
range. The need for including defect scattering to explain
experimental results has already been recognized in previous
works (such as in [15]). To achieve our overall aim, we
note that three general considerations are required before
attempting to apply the theory presented in this work to
interpret and explain Raman measurement, and make further
predictions regarding the magnitude and temperature variation
of the lifetime of long wavelength non-equilibrium phonons
in group-III nitrides. These are: (i) type and quality of
sample, (ii) magnitude and temperature dependence of the
cubic anharmonic coefficient F , and (iii) possible role of
higher-order anharmonicity (such as the contribution from
four-phonon processes). If the sample contains impurities or
defects, or is characterized by surface roughness, additional
phonon scattering rate τ−1(defect) must be included in the

theory. Such scattering is temperature independent but can
produce a dominant contribution to the total phonon scattering
rate at low temperatures. In group-III nitrides, the role of such
scattering can be important up to 400–500 K. The anharmonic
phonon scattering coefficient F is expected to depend on
temperature. This can be appreciated by relating F to the
Grüneisen constant γ . Several works have verified that γ

depends of temperature. In particular, the work by Bruls et al
[31] has suggested that for AlN the value of γ between 300
and 1600 K lies in the range 0.70 and 0.96. However, the
low temperature dominance of τ−1(defect) means that there
is no real need for modelling the temperature dependence of
F up to 300 K when seeking a theoretical fit to Raman data
for group-III nitrides. The role of four-phonon processes can
only be expected to be appreciable at very high temperatures.
Up to moderately high temperatures the phonon relaxation
rate due to four-phonon processes is expected to be at least
two orders of magnitude smaller than the rate due to three-
phonon processes [32]. In the context of present investigations
for group-III nitrides, we do not expect the relaxation rate
of the LO mode in c-BN and the A1(LO) mode in wurtzite
AlN, GaN or InN to be contributed appreciably by four-
phonon processes. With these considerations, we will attempt
to explain the Raman measurements on the group-III nitride
samples by including the effects (i) and (ii) described above.

The scattering rate of a phonon of frequency ω from
impurities/defects/roughness can be calculated by using the
Rayleigh formula τ−1(defect) = Aω4. The coefficient A will
assume different form and values for different situations [33],
and as the exact nature of defects, impurities, roughness of the
samples studied here is not fully established, we will treat A
as an adjustable parameter. As we have mentioned earlier, the
cubic anharmonic parameter F can be considered to be related
to the mode-average Grüneisen constant γ . Temperature
variation of γ is rather difficult to establish, but it is expected
to follow the following behaviour [34]

γ (T ) = γ0(1 + b T 2), (6)

where γ0 is a limiting low temperature value and b is an
appropriate constant factor. Following this, we attempted the
temperature variation of F in the form

F(T ) = F(T0)(1 + b (T − T0)
2), (7)
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with F(T0) fitted at a low temperature T0. For group-III
nitrides studied in this work, room temperature is a reasonably
low temperature below which the effect of phonon scattering
from impurities/defects can be expected to over-shadow any
effect on the temperature variation of F . Thus we have
considered T0 = 300 K as an appropriate choice.

3.3. Decay routes

As discussed in previous works in the literature, three decay
routes are possible for the thermalization of the LO mode
in cubic semiconductors with the diamond and zincblende
structures. These are: (i) Klemens channel (decay into two
acoustic modes) [35], (ii) Vallée–Bogani channel (decay into a
lower mode of the same optical branch and an acoustic mode)
[10, 11] and (iii) Ridley channel (decay into an optical mode
of a lower branch and an acoustic mode) [36]. From the
application of the diatomic linear chain model, it can be shown
that the condition for the Klemens channel to be allowed on
energy grounds is that the mass ratio of the constituent basis
atoms does not exceed 3. In addition to these routes, there is
an additional but very important channel for the decay of the
A1(LO) mode (and other modes) in hexagonal semiconductors,
such as the wurtzite group-III nitrides. This is (iv) Barman–
Srivastava channel (decay into two modes of lower optical
branches) [20].

3.4. Decay rate of the LO mode in zincblende BN

Herchen and Cappelli [37] have presented the Raman data
for the decay of the zone-centre LO mode in zincblende
BN (i.e. c-BN). Their sample is single crystal with low
impurity levels. In order to match our theoretical results
with the experimental data there was no need to include any
impurity/defect scattering of the phonon mode. However,
following the discussion presented earlier, we attempted the
temperature variation of F in the form given in equation (7).
For zincblende BN we were able to fit the experimental Raman
data between 300 and 1800 K by choosing F(T0 = 300 K) =
0.22 × 10−4 m s−1 and b = 0.65 × 10−6 K−2. Our calculated
results for the decay rate between 300 and 2000 K are shown
in the left panel of figure 1. Also shown are the experimental
results of first-order Raman line widths, both Stokes and anti-
Stokes, measured by Herchen and Cappelli [37]. The overall
agreement between the theoretical and experimental results can
be considered to be good.

An analysis of the computed results for the decay of the
LO mode into TA, LA and TO branches suggests that 80%
of the total contribution comes from the Klemens channel
and the rest from the Ridley channel. The Vallée–Bogani
channel is totally ineffective. The Klemens channel involves
the possibility of the LO mode to decay into a combination
of TA and LA modes. From our numerical results we find
that the decays LO → TA + TA, LO → TA + LA and
LO → TA + LA make the partial contributions of 80%, 10%
and 10%, respectively, towards the Klemens channel. The most
dominant of these, namely the decay of the LO mode into two
TA modes, takes place at the X point within the Brillouin zone.
This is indicated in figure 1.

In their work, Herchen et al [37] noted that the
agreement between their theoretical results using a simple
expression for three-phonon (or four-phonon) decay rate and
the experimental results progressively worsened with the
increase in temperature. To obtain good agreement between
theory and experiment they had to include a combination
of three-phonon and four-phonon decay rates. However,
compared to three-phonon decay rate they had to use a much
stronger decay rate contribution from four-phonon processes.
This is in contrast to the generally accepted view that four-
phonon processes are at least two orders of magnitude weaker
than three-phonon processes. As we have shown from the
application of the full theory, coupled with a reasonable
temperature variation of the cubic anharmonic term F , the
decay of the LO mode can be explained entirely satisfactorily
by only considering three-phonon processes.

3.5. Decay rate of the A1LO mode in wurtzite AlN, GaN
and InN

AlN. The results for the temperature variation, between 100
and 1200 K, of the A1(LO) mode in wurtzite AlN are are
shown in figure 2. At higher temperatures, consideration
of only three-phonon processes was required to obtain good
agreement between our numerical results and the time-resolved
Raman measurements for bulk wurtzite AlN obtained by
Kuball et al [14]. In doing so, we used equation (7) with
the parameters F(T0 = 100 K) = 0.428 × 10−4 s m−1 and
b = 0.2 × 10−7 K−2. In order to match our numerical results
with the experimental results at low temperatures, we had to
include an extra contribution from impurity/defect scattering
of the A1(LO) mode in the form τ−1(defect) = Aω4 =
0.476 × 1012 s−1. Such a consideration is justified, as AlN
is known to contain large amounts of unintentional oxygen-
related impurities and defects [38]. In fact, due to the large
affinity of AlN for oxygen, it is rather impossible to eliminate
oxygen contamination.

The decay process is almost equally contributed by the
Ridley channel and the Barman–Srivastava channel. In order to
understand this we note that except for a small peak at around
225 cm−1, the phonon density of states shows a broad structure
up to around 550 cm−1. The Ridley channel involves daughter
phonons at and near the Brillouin zone point H (shown by the
solid arrows in the middle panel of figure 2). The Barman–
Srivastava channel involves daughter phonons along the K–M
symmetry direction (shown by the dashed arrow in the figure).
The Klemens and Vallée–Bogani channels are total ineffective.

GaN. Raman measurements of the decay rate of the A1(LO)

mode in wurtzite GaN have been made on samples prepared by
MBE and CVD deposition techniques. Tsen et al [13] used an
undoped MBE grown sample in the form of a 2 μm thick film
with residual electron density approximately 1016 cm−3, and
density of photoexcited electron–hole pair about 5×1016 cm−3.
For this sample the room temperature decay rate of the A1(LO)

mode was observed to be 3.0 ps. In a later study Tsen et al
[39] used an undoped CVD grown sample as a 6 μm thick
film with plasma density 1 × 1016 cm−3. For this sample the
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measured room temperature decay rate of the A1(LO) mode is
2.5 ps. The smaller decay rate in the more recent study can be
expected to result from a slightly inferior quality of the CVD
grown sample.

The results shown in the left panel of figure 3 are for the
wurtzite GaN sample grown by Tsen et al [13] using molecular
beam epitaxy (MBE). In order to match our theoretical results
with available experimental data in the temperature range
50–300 K a temperature independent value of F(=0.208 ×
10−4 s m−1) was found to be sufficient. However, in order
to match low temperature experimental results for the MBE
grown sample it was necessary to use phonon-defect scattering
parameter in the form τ−1(defect) = 0.0147 × 1012 s−1.

The dominant decay rate of the mode is governed by the
Ridley channel involving daughter modes (particularly from
the TA and higher-lying optical branches) along the �–M and
A–H directions in the hexagonal Brillouin zone, as indicated in
the middle panel of figure 3. Along both two directions there
are flat phonon dispersion curves, leading to sharp peaks in
the density of states at 150 cm−1 in the acoustic range and at
600 cm−1 in the upper optical range, as described earlier. The
other decay channels are ineffective.

InN. Pomeroy et al [15] made Raman measurements on high
quality MBE grown thin InN films. They reported the low
temperature (100 K) lifetime of the A1(LO) mode to increase
from 0.75 to 1.3 ps with the film thickness increase from 0.25
to 7 μm. This clearly indicates the role of surface roughness
on the lifetime. In addition, some contribution from phonon–
impurity/defect can also be expected. With this in mind we
have reproduced their experimental lifetime results for the InN
film of thickness 7 μm in the temperature range 100–700 K
by using τ−1(defect) = 0.218 × 1012 s−1 and three-phonon
processes with the anharmonicity factor considered with the
parameters F(T0 = 100 K) = 0.10 × 10−4 s m−1 and b =
0.12 × 10−5 K−2.

The A1(LO) mode decays via both the Ridley and
Barman–Srivastava channels, with the former making a
dominant contribution. The Ridley channel takes place at
two locations within the hexagonal Brillouin zone. One of
the routes involves two daughter phonons of TA branches
at/near the M point with energies around 80 cm−1 and of
two of the higher-lying optical branches at around 500 cm−1.
Another route involves two daughter modes along the A-H
symmetry direction, with frequencies approximately 100 cm−1

(transverse branches) and 480 cm−1 (up to four of the optical
branches lying below the A1 mode). The contribution from the
Barman–Srivastava channel involves the two daughter phonons
modes at/near the M point with frequencies at around 110 cm−1

(lowest-lying optical branch) and at around 489 cm−1 (lowest
of the higher group of optical branches).

4. Summary and discussion

In this work we have presented a detailed account of the
theory of anharmonic decay of a zone-centre phonon into
two daughter phonons, with particular reference to group-III
nitrides. It has been pointed out that consideration of realistic

phonon dispersion relations, which in turn are governed by
cation–anion mass ratio and interatomic force constants, plays
an important role in determining effective decay routes. In
order to present numerically accurate results we have used
realistic phonon dispersion relations, an elastic continuum
model for cubic anharmonicity, and an accurate scheme for
Brillouin zone integration. The cubic anharmonic coupling
constant is assumed to obey a temperature variation similar to
that of the Grüneisen’s constant.

We have successfully explained the available Raman
measurements of the temperature variation of the lifetime of
the LO mode in cubic BN and the A1(LO) mode in hexagonal
AlN, GaN and InN. The results have been explained in terms
of contributions from various decay channels. In zincblende
BN, for which the cation/anion mass ratio is mB/mN = 0.77,
the Klemens channel (decay into two acoustic modes) and the
Ridley channel (decay into an optical and an acoustic modes)
contribute 80% and 20%, respectively. In wurtzite AlN, with
mAl/mN = 1.93, there are almost equal contributions from
the Ridley channel and the Barman–Srivastava channel (decay
into two optical modes). In GaN, with mGa/mN = 4.98, the
entire contribution comes from the Ridley channel. In InN,
with mIn/mN = 8.20, the Ridley channel contributes a little
more than the Barman–Srivastava channel.

At room temperature the lifetime results for the group-III
nitrides are: 1.67 ps in BN, 0.58 ps in AlN, 2.96 ps in GaN and
0.66 ps in InN. We also note that experimentally measured low
temperature results are approximately 0.8 ps, 5.0 ps and 1.2 ps
for AlN, GaN and InN, respectively. The significantly low
lifetime (i.e. fast decay rate) in AlN and InN results from the
onset of the Barman–Srivastava channel. From our work we
suggest that alloying GaN and/or InN with AlN would result
in significant reduction in the ‘hot phonon effect’ observed in
GaN and InN.
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